ACL 2019

Effective Adversarial Regularization for Neural Machine Translation

Motoki Sato,^[1] Jun Suzuki,^[2,3] Shun Kiyono^[3,2]

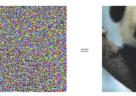
[1] Preferred Networks, Inc.[2] Tohoku University[3] RIKEN Center for Advanced Intelligence Project

1. Adversarial Regularization for Image Classification

[Goodfellow et al .,2015]

Image Classification :

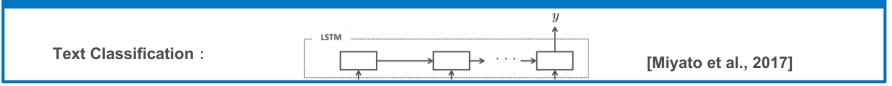
1. Adversarial Regularization for Image Classification



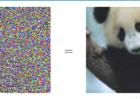
[Goodfellow et al .,2015]

2. Adversarial Regularization for Text Classification

Image Classification :

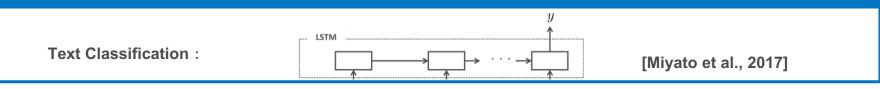


1. Adversarial Regularization for Image Classification



[Goodfellow et al .,2015]

2. Adversarial Regularization for Text Classification



3. Our Main Question

Image Classification :

1. Adversarial Regularization for Image Classification

[Goodfellow et al .,2015]

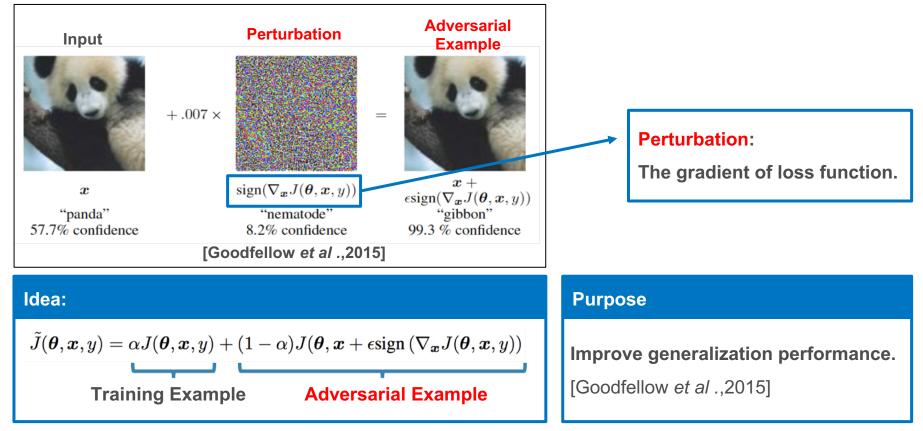
Text Classification :

Image Classification :

[Miyato et al., 2017]

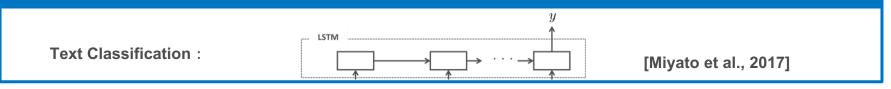
1. Adversarial Regularization for Image

[Szegedy et al., 2014, Goodfellow et al., 2015]



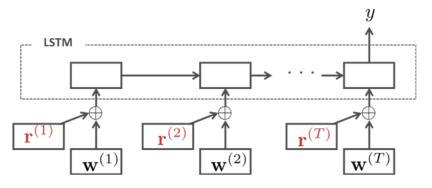
[Goodfellow et al .,2015]

2. Adversarial Regularization for Text Classification



2. Adversarial Regularization for Text [Miyato et al., 2017]

- The perturbation is applied to the word embedding layer.
- The adversarial regularization improves the performance on **text classification** task.



$$egin{aligned} \hat{m{r}}_i =& \epsilon rac{m{a}_i}{||m{a}||_2}, \quad m{a}_i =
abla_{m{e}_i} \ell(m{X},m{Y},m{\Theta}) \ \epsilon &= 1.0 \quad (ext{hyper-parameter}) \end{aligned}$$
 $egin{aligned} & \mathcal{A}(\mathcal{D},m{\Theta}) = -rac{1}{|\mathcal{D}|} \sum_{(m{X},m{Y})\in\mathcal{D}} \ell(m{X},\hat{m{r}},m{Y},m{\Theta}) \ \hat{m{\Theta}} &= rgmin_{m{\Theta}} \left\{ \mathcal{J}(\mathcal{D},m{\Theta}) + \lambda \mathcal{A}(\mathcal{D},m{\Theta})
ight\} \end{aligned}$

- w : Word Embedding
- r : Adversarial Perturbations

Two Options for Computing the Perturbation (How to define "loss function")

2. Adversarial Regularization for Text [Miyato et al., 2017]

$$\hat{m{r}}_i = \epsilon rac{m{a}_i}{||m{a}||_2}, \quad m{a}_i =
abla_{m{e}_i} \ell(m{X},m{Y},m{\Theta}).$$

Two Options for Computing the Perturbation (how to define "loss function")

- (1) Adversarial Training (AdvT) [Goodfellow et al .,2015]
- \rightarrow compute the loss from the gold label (i.e. target sequence)

$$\ell(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\Theta}) = \log(p(\boldsymbol{Y}|\boldsymbol{X}, \boldsymbol{\Theta}))$$

2 Virtual Adversarial Training (VAT) [Miyato et al., 2016]

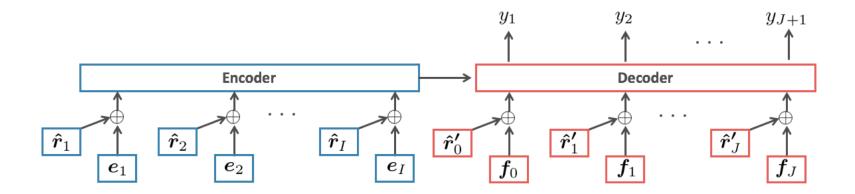
 \rightarrow compute the loss with KL divergence.

$$\ell_{ ext{KL}}(oldsymbol{X}, \hat{oldsymbol{r}}, \cdot, oldsymbol{\Theta}) = ext{KL}ig(p(\cdot \mid oldsymbol{X}, oldsymbol{\Theta}) || p(\cdot \mid oldsymbol{X}, \hat{oldsymbol{r}}, oldsymbol{\Theta})ig)$$

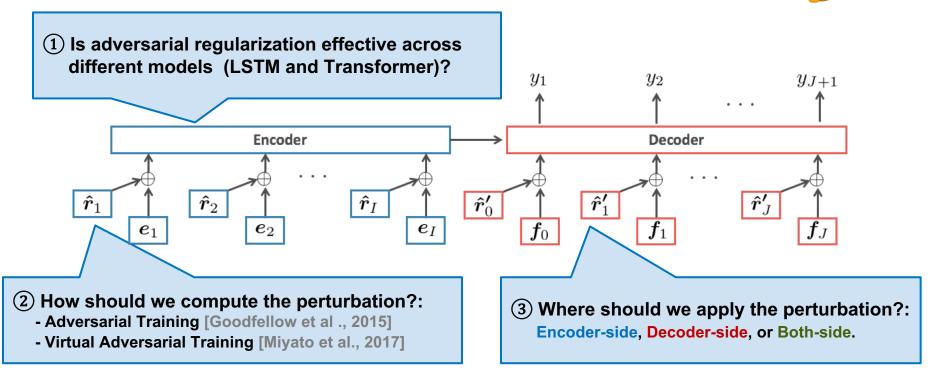
[Goodfellow et al .,2015]

3. Our Main Question

Our Main Question



Our Main Question



Experimental Setup

- Dataset: IWSLT 2016 [Cettolo et al., 2012]
- Configurations
 - 1. Model Architecture
 - LSTM w/ attention [Luong et al., 2015]
 - Transformer [Vaswani et al., 2017]
 - 2. Adversarial regularization techniques
 - Adversarial Training (AdvT) [Goodfellow et al .,2015]
 - Virtual Adversarial Training (VAT) [Miyato et al., 2017]
 - 3. Perturbation positions
 - encoder-side, decoder-side, both-side (enc & dec)
- Language Pairs
 - $\circ \quad \text{EN} \rightarrow \text{FR}, \text{FR} \rightarrow \text{EN}, \text{EN} \rightarrow \text{DE}, \text{DE} \rightarrow \text{EN}$
- Evaluation
 - BLEU score [Papineni et al., 2002]

What is the Most Effective Configuration?

		IWSLT (EN→DE)				
Model	Perturbation	test2013	test2014			
LSTM	(None)	27.73	23.98			
+AdvT	enc	28.73	24.90			
	dec	27.44	23.71			
	enc-dec	28.47	24.78			
+VAT	enc	29.03	24.75			
	dec	27.49	23.20			
	enc-dec	29.47	24.92			
Transformer	(None)	29.15	25.19			
+AdvT	enc	29.04	25.16			
	dec	28.95	25.75			
	enc-dec	29.61	25.78			
+VAT	enc	29.95	26.00			
	dec	29.62	25.88			
	enc-dec	<u>30.13</u>	<u>26.06</u>			

Results

- Adversarial regularization improves
 - the performance of LSTM & Transformer.
- VAT consistently outperforms AdvT.
- "enc-dec" is the best position to apply the perturbation.

Findings

• Transformer + VAT (Both-side)

is the most effective configuration

Results on four language pair

		DE→EN		FR-	→EN	EN→DE		EN→FR	
Model	Perturbation	test2013	test2014	test2013	test2014	test2013	test2014	test2013	test2014
Transformer	None	34.22	30.19	38.87	37.20	29.15	25.19	40.43	37.90
+ VAT	enc-dec	35.06	31.10	40.09	37.89	30.13	26.06	41.13	38.64
+ VAT + AdvT	enc-dec	35.50	30.88	40.26	38.44	30.04	26.33	41.67	38.72

Findings

- Transformer+VAT consistently outperformed the baseline (Transformer)
- AdvT and VAT can be combined to further improve the performance

Back-translation + Adversarial Regularization

Q. Is "Back-translation" effective with VAT?

[Sennrich et al., 2016]

We incorporated **pseudo-parallel corpora** generated using **back-translation** [Sennrich et al., 2016] as **additional training data**. (we used the WMT14 news translation corpus.)

Back-translation + Adversarial Regularization

Q. Is "Back-translation" effective with VAT? [Sennrich et al., 2016]

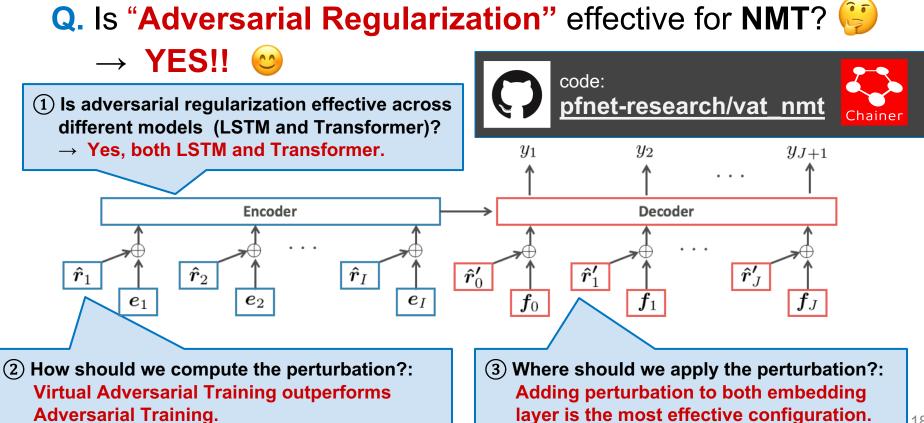
We incorporated **pseudo-parallel corpora** generated using **back-translation** [Sennrich et al., 2016] as additional training data. (we used the WMT14 news translation corpus.)

		DE→EN		FR→EN		EN→DE		EN→FR	
Model	Perturbation	test2013	test2014	test2013	test2014	test2013	test2014	test2013	test2014
Transformer (baseline)	None	34.22	30.19	38.87	37.20	29.15	25.19	40.43	37.90
Transformer + BT	None	35.44	31.08	40.44	38.42	30.73	26.02	41.74	39.03
Transformer + BT + VAT	enc-dec	<u>36.43</u>	<u>32.53</u>	<u>41.29</u>	<u>39.76</u>	<u>31.99</u>	<u>27.20</u>	<u>43.41</u>	<u>40.15</u>

Findings

Adversarial regularization can be combined with <u>back-translation technique</u>.

Take Home Message of Our Presentation



of the Association for Computational Linguistics

ACL 2019

ANNUAL MEETING

Motoki Sato

^{code:} pfnet-research/vat_nmt

> Florence (Italy) July 28th - August 2nd Fortezza da Basso

#acl2019 #acl2019flore

Thank you for your attention!

th

Jun Suzuki

Shun Kiyono

Association for Computational Linguistics

References

• [Szegedy et al., 2014]

"Intriguing properties of neural networks", ICLR.

• [Goodfellow et al .,2015]

"Explaining and Harnessing Adversarial Examples", ICLR.

• [Miyato et al., 2016]

"Distributional Smoothing with Virtual Adversarial Training", ICLR.

• [Miyato et al., 2017]

"Adversarial Training Methods for SemiSupervised Text Classification", ICLR.

• [Clark et al., 2018]

"Semi-Supervised Sequence Modeling with Cross-View Training", EMNLP.

• [Vaswani et al., 2017]

"Attention is All you Need", NIPS

• [Luong et al., 2015]

"Effective Approaches to Attentionbased Neural Machine Translation", EMNLP

• [Sennrich et al., 2016]

"Improving Neural Machine Translation Models with Monolingual Data", ACL.

Translated Example

Input	meine gebildete Mutter aber wurde Lehrerin .				
Reference	but my educated mother became a teacher .				
Baseline (Transformer)	my educated mother , though , became a teacher				
Proposed (Transformer+VAT w/ BT)	but my educated mother became a teacher .				
Input	aber man kann sehen , wie die Menschen				
	miteinander kommunizieren , zu welchen Zeiten				
	sie einander anrufen , wann sie zu Bett gehen .				
Reference	but you can see how your people are				
	communicating with each other , what times they				
	call each other , when they go to bed .				
Baseline (Transformer)	but you can see how people talk to each other				
	about what time they call each other when they				
	go to bed .				
<pre>Proposed (Transformer+VAT w/ BT)</pre>	but you can see how people communicate with				
	each other , at which time they call each other				
	, when they go to bed .				
Input	wer im Saal hat ein Handy dabei ?				
Reference	who in the room has a mobile phone with you ?				
Baseline (Transformer)	who in the room has a cell phone in it ?				
Proposed (Transformer+VAT w/ BT)	who in the room has a cell phone with me ?				

Table 4: Example translation from German \rightarrow English (test2013).

Virtual Adversarial Training [Miyato et al., 2016]

$$\ell_{ ext{kl}}(oldsymbol{X}, \hat{oldsymbol{r}}, \cdot, oldsymbol{\Theta}) = ext{Kl}ig(p(\cdot \mid oldsymbol{X}, oldsymbol{\Theta}) || p(\cdot \mid oldsymbol{X}, \hat{oldsymbol{r}}, oldsymbol{\Theta})ig)$$

$$\hat{m{r}}_i = \! \epsilon rac{m{a}_i}{||m{a}||_2}, \quad m{a}_i =
abla_{m{e}_i} \ell(m{X},m{Y},m{\Theta}).$$

Experimental Results: Other Directions

			DE→EN		FR→EN		EN→DE		EN→FR	
	Model	Perturbation	test2013	test2014	test2013	test2014	test2013	test2014	test2013	test2014
	LSTM	None	32.71	28.53	39.09	36.25	27.73	23.98	38.89	36.18
	Transformer	None	34.22	30.19	38.87	37.20	29.15	25.19	40.43	37.90
	+ VAT	enc-dec	35.06	31.10	40.09	37.89	30.13	26.06	41.13	38.64
	+ VAT + AdvT	enc-dec	35.50	30.88	40.26	38.44	30.04	26.33	41.67	38.72
w/ BT	Transformer	enc-dec	35.44	31.08	40.44	38.42	30.73	26.02	41.74	39.03
	+ VAT	enc-dec	36.43	<u>32.53</u>	41.29	<u>39.76</u>	<u>31.99</u>	<u>27.20</u>	<u>43.41</u>	<u>40.15</u>
	+ VAT + AdvT	enc-dec	<u>36.49</u>	32.39	<u>41.56</u>	39.64	31.29	27.05	42.61	39.95

• AdvT and VAT can be combined to further improve the performance

• Adversarial regularization can be combined with <u>back-translation technique</u> [Sennrich et al., 2016]

Back-translation

- (Example) $EN \rightarrow DE$
 - (x, y) IWSLT
 - (y') WMT 14 corpus (target side unlabeled text)
 - $y' \rightarrow x'$ (pseudo-parallel corpus)